The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor.

نویسندگان

  • K M Argraves
  • K F Kozarsky
  • J T Fallon
  • P C Harpel
  • D K Strickland
چکیده

Lp(a) is a major inherited risk factor associated with premature heart disease and stroke. The mechanism of Lp(a) atherogenicity has not been elucidated, but likely involves both its ability to influence plasminogen activation as well as its atherogenic potential as a lipoprotein particle after receptor-mediated uptake. We demonstrate that fibroblasts expressing the human VLDL receptor can mediate endocytosis of Lp(a), leading to its degradation within lysosomes. In contrast, fibroblasts deficient in this receptor are not effective in catabolizing Lp(a). Lp(a) degradation was prevented by antibodies against the VLDL receptor, and by RAP, an antagonist of ligand binding to the VLDL receptor. Catabolism of Lp(a) was inhibited by apolipoprotein(a), but not by LDL or by monoclonal antibodies against apoB100 that block LDL binding to the LDL receptor, indicating that apolipoprotein(a) mediates Lp(a) binding to this receptor. Removal of Lp(a) antigen from the mouse circulation was delayed in mice deficient in the VLDL receptor when compared with control mice, indicating that the VLDL receptor may play an important role in Lp(a) catabolism in vivo. We also demonstrate the expression of the VLDL receptor in macrophages present in human atherosclerotic lesions. The ability of the VLDL receptor to mediate endocytosis of Lp(a) could lead to cellular accumulation of lipid within macrophages, and may represent a molecular basis for the atherogenic effects of Lp(a).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraoxonase 1 Activity, Lipid Profile, and Atherogenic Indexes Status in Coronary Heart Disease

Background: Dyslipidemia is considered an independent risk factor for coronary heart disease (CHD). In the present study, we examined lipid profiles and paraoxonase 1 (PON1) activity and atherogenic indexes status and the relationship of PON1 activity by high-density lipoprotein (HDL) and atherogenic indexes in CHD patients and healthy people. Methods: The aim of the study was to compare PON...

متن کامل

Compare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma

Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...

متن کامل

Apolipoprotein E Is the Determinant that Mediates the Receptor Uptake of B-Very Low Density Lipoproteins by Mouse Macrophages

Beta very low density lipoproteins (B-VLDL) from cholesterol-fed animals and from patients with Type III hyperlipoproteinemia are internalized by a receptor-mediated process in mouse macrophages. Once internalized, the cholesteryl esters of B-VLDL are hydrolyzed in lysosomes, and the released cholesterol is re-esterified, resulting in a massive accumulation of cholesteryl esters. In the present...

متن کامل

Apolipoprotein E is the determinant that mediates the receptor uptake of beta-very low density lipoproteins by mouse macrophages.

Beta very low density lipoproteins (beta-VLDL) from cholesterol-fed animals from patients with Type III hyperlipoproteinemia are internalized by a receptor-mediated process in mouse macrophages. Once internalized, the cholesteryl esters of beta-VLDL are hydrolyzed in lysosomes, and the released cholesterol is re-esterified, resulting in a massive accumulation of cholesteryl esters. In the prese...

متن کامل

Receptor-mediated uptake of hypertriglyceridemic very low density lipoproteins by normal human fibroblasts.

Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 9  شماره 

صفحات  -

تاریخ انتشار 1997